Internals
PAndQ.union_typeof
— Functionunion_typeof(xs)
Equivalent to Union{map(typeof, xs)...}
.
Examples
julia> PAndQ.union_typeof((⊤, ¬, ∧))
Union{PAndQ.Interface.Operator{:tautology}, PAndQ.Interface.Operator{:not}, PAndQ.Interface.Operator{:and}}
PicoSAT
PAndQ.PicoSAT
— ModulePicoSAT
This module provides an interface to libpicosat_jll.jl.
libpicosat
PAndQ.PicoSAT.picosat_init
— Functionpicosat_init()
Construct a new PicoSAT instance and return a pointer to it.
PAndQ.PicoSAT.picosat_reset
— Functionpicosat_reset(pico_sat)
Destruct the pico_sat
instance.
PAndQ.PicoSAT.picosat_add
— Functionpicosat_add(pico_sat, literal)
Append the literal
to the pico_sat
instance's current disjunctive clause.
PAndQ.PicoSAT.picosat_variables
— Functionpicosat_variables(pico_sat)
Return the number of unique atoms in the pico_sat
instance.
PAndQ.PicoSAT.picosat_print
— Functionpicosat_print(pico_sat, file)
Write the DIMACS format of the pico_sat
instance's proposition to the given file
.
PAndQ.PicoSAT.picosat_sat
— Functionpicosat_sat(pico_sat, limit)
Search for a satisfiable assignment of the pico_sat
instance's proposition and return 0
, 10
, or 20
if the status is unknown, satisfiable, or unsatisfiable, respectively.
PAndQ.PicoSAT.picosat_deref
— Functionpicosat_deref(pico_sat, atom)
Return the assignment of the atom
, where 1
, -1
, and 0
indicate true
, false
, and unknown, respectively.
This function must be called after verifying that the status of picosat_sat
is satisfiable.
Utilities
PAndQ.PicoSAT.add_clause
— Functionadd_clause(pico_sat, clause)
Mutate the pico_sat
instance's proposition to be the conjunction of itself and the disjunctive clause
.
PAndQ.PicoSAT.initialize
— Functioninitialize(clauses)
Return a PicoSAT pointer with its proposition being a conjunction of the disjunctive clauses
.
PAndQ.PicoSAT.Solutions
— TypeSolutions
Solutions(clauses)
A stateful iterator of valuations that satisfy the given proposition.
Calling finalize
on this iterator will first check whether it has already been finalized. If not, it will call picosat_reset
on its PicoSAT pointer and set the pointer equal to C_NULL
.
Base.eltype
— Functioneltype(::Type{Solutions})
The type of the elements generated by a Solutions
iterator.
Examples
julia> eltype(PAndQ.PicoSAT.Solutions)
Base.Generator{Base.Iterators.Enumerate{Base.Iterators.Filter{Base.Fix2{typeof(!=), Int64}, Vector{Int32}}}, Base.Splat{typeof(*)}}
Base.IteratorSize
— TypeIteratorSize(::Type{Solutions})
Since counting the number of Solutions
to a proposition is intractable, its IteratorSize
is Base.SizeUnknown
.
Examples
julia> Base.IteratorSize(PAndQ.PicoSAT.Solutions)
Base.SizeUnknown()
PAndQ.PicoSAT.is_satisfiable
— Functionis_satisfiable(pico_sat)
Return whether the pico_sat
instance's status is currently satisfiable.
Base.isdone
— Functionisdone(solutions::Solutions, pico_sat = solutions.pico_sat)
Return a Bool
ean whether the pico_sat
instance can yield any more solutions without advancing the Solutions
iterator.
Finalize the iterator if it has not yet been finalized and is done.
Base.iterate
— Functioniterate(solutions::Solutions, pico_sat = solutions.pico_sat)
If the status of pico_sat
is_satisfiable
, return a Tuple
of the current solution and pico_sat
. Otherwise, finalize
the solutions
and return nothing
.
PAndQ.PicoSAT.print_dimacs
— Functionprint_dimacs(io, clauses)
Print the DIMACS format of the conjunctive clauses
.
The io
can be an IO
or file path String
to write to.
Examples
julia> PAndQ.PicoSAT.print_dimacs(stdout, [[-1, -2], [1, 2]])
p cnf 2 2
-1 -2 0
1 2 0
julia> PAndQ.PicoSAT.print_dimacs(stdout, [[1, -2], [-1, 2]])
p cnf 2 2
1 -2 0
-1 2 0
Interface
PAndQ.Interface.InterfaceError
— TypeInterfaceError{F <: Function, O <: Operator, N <: Union{Nothing, Int}} <: Exception
InterfaceError(::F, ::O, ::N)
An Exception
indicating that the function of type F
has not been implemented for the value of type T
.
If N
is Nothing
, then the function does not accept any propositions. Otherwise, N
is the number of propositions given.
Base.showerror
— Functionshowerror(::IO, ::InterfaceError)
Print a message indicating to implement a method of an interface.
PAndQ.Interface.@interface
— Macro@interface(f, xs...)
Define a fallback method that throws an InterfaceError
.
Operators
PAndQ.NullaryOperator
— TypeNullaryOperator
The Union
of Nullary Operators.
PAndQ.UnaryOperator
— TypeUnaryOperator
The Union
of Unary Operators.
PAndQ.BinaryOperator
— TypeBinaryOperator
The Union
of Binary Operators.
PAndQ.NaryOperator
— TypeNaryOperator
The Union
of Nary Operators.
PAndQ.AndOr
— TypePropositions
Types
Proposition
├─ Atom
│ ├─ Constant
│ └─ Variable
└─ Compound
├─ Clause
├─ Normal
└─ Tree
Abstract
PAndQ.Proposition
— TypePAndQ.Atom
— TypeAtom <: Proposition
A proposition with no deeper propositional structure.
Subtype of Proposition
. Supertype of Constant
and Variable
.
PAndQ.Compound
— TypeCompound <: Proposition
A proposition composed from connecting Atom
s with one or more Operator
s.
Subtype of Proposition
. Supertype of Tree
, Clause
, and Normal
.
Concrete
PAndQ.Constant
— TypeConstant <: Atom
Constant(value)
An atomic sentence.
Subtype of Atom
.
Examples
julia> PAndQ.Constant(1)
$(1)
julia> PAndQ.Constant("Logic is fun")
$("Logic is fun")
PAndQ.Variable
— TypeVariable <: Atom
An atomic formula.
Subtype of Atom
.
Examples
julia> PAndQ.Variable(:p)
p
julia> PAndQ.Variable(:q)
q
PAndQ.Tree
— TypeTree{N} <: Compound
Tree(::Operator, ::Union{Atom, Tree}...)
A Proposition
represented by an abstract syntax tree.
Subtype of Compound
. See also Operator
and Atom
.
Examples
julia> PAndQ.Tree(⊤)
⊤
julia> @atomize PAndQ.Tree(¬, p)
¬p
julia> @atomize PAndQ.Tree(and, PAndQ.Tree(p), PAndQ.Tree(q))
p ∧ q
PAndQ.Clause
— TypeClause{AO <: AndOr} <: Compound
Clause(::AO, ::Vector{<:Atom}, ::Set{Int})
A proposition represented as either a conjunction or disjunction of literals.
An empty Clause
is logically equivalent to the initial_value
of it's binary operator.
Subtype of Compound
. See also AndOr
and Atom
.
Examples
julia> PAndQ.Clause(∧, PAndQ.Atom[], Set{Int}())
⊤
julia> @atomize PAndQ.Clause(∧, [p], Set(1))
p
julia> @atomize PAndQ.Clause(∨, [p, q], Set([1, -2]))
¬q ∨ p
PAndQ.Normal
— TypeNormal{AO <: AndOr} <: Compound
Normal(::AO, ::Vector{Atom}, ::Set{Set{Int}})
A Proposition
represented in conjunctive or disjunctive normal form.
An empty Normal
is logically equivalent to the initial_value
of it's binary operator.
Subtype of Compound
. See also AndOr
and Clause
.
Examples
julia> PAndQ.Normal(∧, PAndQ.Atom[], Set{Set{Int}}())
⊤
julia> @atomize PAndQ.Normal(∧, [p, q], Set(map(Set, ((1, 2), (-1, -2)))))
(¬p ∨ ¬q) ∧ (p ∨ q)
AbstractTrees.jl
AbstractTrees.children
— Functionchildren(::Union{Tree, Clause, Normal})
Return an iterator over the child nodes of the given proposition.
See also Tree
, Clause
, and Normal
.
Examples
julia> @atomize PAndQ.children(p)
()
julia> @atomize PAndQ.children(¬p)
(PAndQ.Variable(:p),)
julia> @atomize PAndQ.children(p ∧ q)
(identical(PAndQ.Variable(:p)), identical(PAndQ.Variable(:q)))
AbstractTrees.nodevalue
— Functionnodevalue(::Union{Tree, Clause, Normal})
Return the Operator
of the proposition's root node.
See also Tree
, Clause
, and Normal
.
Examples
julia> @atomize PAndQ.nodevalue(¬p)
¬
julia> @atomize PAndQ.nodevalue(p ∧ q)
∧
AbstractTrees.printnode
— Functionprintnode(::IO, ::Union{Operator, Proposition}; kwargs...)
Print the representation of the proposition's root node.
See also Operator
and Proposition
.
Examples
julia> @atomize PAndQ.printnode(stdout, p)
p
julia> @atomize PAndQ.printnode(stdout, ¬p)
¬
julia> @atomize PAndQ.printnode(stdout, p ∧ q)
∧
AbstractTrees.NodeType
— TypeNodeType(::Type{<:Atom})
See also Atom
.
Examples
julia> PAndQ.NodeType(PAndQ.Atom)
AbstractTrees.HasNodeType()
AbstractTrees.nodetype
— FunctionUtility
PAndQ.deconstruct
— Functiondeconstruct(p)
Return (nodevalue(p), children(p))
.
See also nodevalue
and children
.
Examples
julia> @atomize PAndQ.deconstruct(p)
(PAndQ.Variable(:p), ())
julia> @atomize PAndQ.deconstruct(¬p)
(PAndQ.Interface.Operator{:not}(), (PAndQ.Variable(:p),))
julia> @atomize PAndQ.deconstruct(p ∧ q)
(PAndQ.Interface.Operator{:and}(), (identical(PAndQ.Variable(:p)), identical(PAndQ.Variable(:q))))
PAndQ.child
— FunctionPAndQ.load_or_error
— Functionload_or_error(x)
Return an expression that when eval
uated returns x
if PAndQ
is defined and throws an Exception
otherwise.
PAndQ.atomize
— Functionatomize(x)
If x
is a symbol, return an expression that instantiates it as a Variable
if it is undefined in the caller's scope. If isexpr(x, :$)
, return an expression that instantiates it as a Constant
. If x
is a different expression, traverse it with recursive calls to atomize
. Otherise, return x.
PAndQ.distribute
— Functiondistribute(p)
Given a proposition in negation normal form, return that proposition in conjunction normal form.
PAndQ.flatten
— Functionflatten(p)
Printing
Semantics
PAndQ.eval_pairs
— Functioneval_pairs(f, pairs)
Define f(::typeof(left)) = right
and f(::typeof(right)) = left
for each pair left
and right
in pairs
.
Base.convert
— Functionconvert(::Type{<:Proposition}, p)
See also Proposition
.
Base.promote_rule
— Functionpromote_rule