Semantics
Truths
PAndQ.valuations
— Functionvaluations(atoms)
valuations(p)
Return an iterator of every possible valuation of the given atoms
or the atoms contained in p
.
Examples
julia> collect(valuations(⊤))
0-dimensional Array{Vector{Union{}}, 0}:
[]
julia> @atomize collect(valuations(p))
2-element Vector{Vector{Pair{PAndQ.Variable, Bool}}}:
[PAndQ.Variable(:p) => 1]
[PAndQ.Variable(:p) => 0]
julia> @atomize collect(valuations(p ∧ q))
2×2 Matrix{Vector{Pair{PAndQ.Variable, Bool}}}:
[Variable(:p)=>1, Variable(:q)=>1] [Variable(:p)=>1, Variable(:q)=>0]
[Variable(:p)=>0, Variable(:q)=>1] [Variable(:p)=>0, Variable(:q)=>0]
PAndQ.interpret
— Functioninterpret(valuation, p)
Substitute each atom in p
with values given by the valuation
.
The valuation
can be a Function
that accepts an atom and returns a logical value, a Dict
ionary mapping from atoms to logical values, or an iterable that can construct such a dictionary. No substitution is performed if an atom is not one of the dictionary's keys.
Examples
julia> @atomize interpret(atom -> ⊤, ¬p)
¬⊤
julia> @atomize interpret(p => ⊤, p ∧ q)
⊤ ∧ q
PAndQ.interpretations
— Functioninterpretations(valuations, p)
interpretations(p)
Return an Array{Bool}
given by interpret
ing p
with each of the valuations
.
Examples
julia> collect(interpretations(⊤))
0-dimensional Array{Bool, 0}:
1
julia> @atomize collect(interpretations(p))
2-element Vector{Bool}:
1
0
julia> @atomize collect(interpretations(p ∧ q))
2×2 Matrix{Bool}:
1 0
0 0
PAndQ.solutions
— Functionsolutions(p)
Return a stateful iterator of valuations
such that interpret(valuation, p) == ⊤
.
To find every valuation that results in a true interpretation, convert the proposition to conjunctive normal form using normalize
. Otherwise, a subset of those valuations will be identified using the tseytin
transformation.
See also interpret
and tautology
.
Examples
julia> map(collect, solutions(⊤))
1-element Vector{Vector{Any}}:
[]
julia> @atomize map(collect, solutions(p))
1-element Vector{Vector{Pair{PAndQ.Variable, Bool}}}:
[PAndQ.Variable(:p) => 1]
julia> map(collect, solutions(⊥))
Any[]
Predicates
PAndQ.is_tautology
— Functionis_tautology(p)
Return a Bool
ean indicating whether the given proposition is logically equivalent to a tautology
.
Examples
julia> is_tautology(⊤)
true
julia> @atomize is_tautology(p)
false
julia> @atomize is_tautology(¬(p ∧ ¬p))
true
PAndQ.is_contradiction
— Functionis_contradiction(p)
Return a Bool
ean indicating whether the given proposition is logically equivalent to a contradiction
.
Examples
julia> is_contradiction(⊥)
true
julia> @atomize is_contradiction(p)
false
julia> @atomize is_contradiction(p ∧ ¬p)
true
PAndQ.is_truth
— Functionis_truth(p)
Return a Bool
ean indicating whether given proposition is logically equivalent to a truth value.
Examples
julia> is_truth(⊤)
true
julia> @atomize is_truth(p ∧ ¬p)
true
julia> @atomize is_truth(p)
false
julia> @atomize is_truth(p ∧ q)
false
PAndQ.is_contingency
— Functionis_contingency(p)
Return a Bool
ean indicating whether p
is a contingency (not logically equivalent to a truth value).
Examples
julia> is_contingency(⊤)
false
julia> @atomize is_contingency(p ∧ ¬p)
false
julia> @atomize is_contingency(p)
true
julia> @atomize is_contingency(p ∧ q)
true
PAndQ.is_satisfiable
— Functionis_satisfiable(p)
Return a Bool
ean indicating whether p
is satisfiable (not logically equivalent to a contradiction
).
Examples
julia> is_satisfiable(⊤)
true
julia> @atomize is_satisfiable(p ∧ ¬p)
false
julia> @atomize is_satisfiable(p)
true
julia> @atomize is_satisfiable(p ∧ q)
true
PAndQ.is_falsifiable
— Functionis_falsifiable(p)
Return a Bool
ean indicating whether p
is falsifiable (not logically equivalent to a tautology
).
Examples
julia> is_falsifiable(⊥)
true
julia> @atomize is_falsifiable(p ∨ ¬p)
false
julia> @atomize is_falsifiable(p)
true
julia> @atomize is_falsifiable(p ∧ q)
true
PAndQ.is_equisatisfiable
— Functionis_equisatisfiable(p, q)
Return a Bool
ean indicating whether the predicate is_satisfiable
is congruent for both propositions.
Examples
julia> is_equisatisfiable(⊤, ⊥)
false
julia> @atomize is_equisatisfiable(p, q)
true
Ordering
Propositions and their truth values have a strict partial order. The truth values tautology
and contradiction
are the top and bottom of this order, respectively. A proposition that satisfies the predicate is_tautology
or is_contradiction
is also at the top or bottom of the order, respectively. Propositions that satisfy the predicate is_contingency
occupy the middle of this order. In other words, ⊥ < ⊤
, ⊥ <= p
, and p <= ⊤
for some proposition p
. The ordering is partial because the predicates ==
and is_truth
may both be false for two given propositions.
The implementations for ==
and <
also define the semantics of isequal
, >
, <=
, and >=
. This does not define the semantics of isless
, which is used for total orders.
The assumption that isequal(p, q)
implies hash(p) == hash(q)
is currently being violated. A future version will implement the Quine–McCluskey algorithm to minimize propositions, which will enable hash
to be defined too.
Base.:==
— Function==(p, q)
p == q
Return a Bool
ean indicating whether p
and q
are logically equivalent.
Constants are equivalent only if their value
s are equivalent.
The ≡
symbol is sometimes used to represent logical equivalence. However, Julia uses ≡
as an alias for the builtin function ===
which cannot have methods added to it.
Examples
julia> @atomize ⊥ == p ∧ ¬p
true
julia> @atomize (p ↔ q) == ¬(p ↮ q)
true
julia> @atomize $1 == $1
true
julia> @atomize p == ¬p
false
Base.:<
— Function<(p, q)
p < q
Return a Bool
ean indicating whether the arguments are ordered such that r < s < t
, where r
, s
, and t
satisfy is_contradiction
, is_contingency
, and is_tautology
, respectively.
Examples
julia> @atomize ⊥ < p < ⊤
true
julia> @atomize p ∧ ¬p < p < p ∨ ¬p
true
julia> @atomize p < p
false
julia> ⊤ < ⊥
false
Utilities
Core.Bool
— MethodBool(truth_value)
Return a Bool
ean corresponding to the given truth value.
Examples
julia> Bool(⊤)
true
julia> Bool(⊥)
false