Semantics

Truths

PAndQ.valuationsFunction
valuations(atoms)
valuations(p)

Return an iterator of every possible valuation of the given atoms or the atoms contained in p.

Examples

julia> collect(valuations(⊤))
0-dimensional Array{Vector{Union{}}, 0}:
[]

julia> @atomize collect(valuations(p))
2-element Vector{Vector{Pair{PAndQ.Variable, Bool}}}:
 [PAndQ.Variable(:p) => 1]
 [PAndQ.Variable(:p) => 0]

julia> @atomize collect(valuations(p ∧ q))
2×2 Matrix{Vector{Pair{PAndQ.Variable, Bool}}}:
 [Variable(:p)=>1, Variable(:q)=>1]  [Variable(:p)=>1, Variable(:q)=>0]
 [Variable(:p)=>0, Variable(:q)=>1]  [Variable(:p)=>0, Variable(:q)=>0]
source
PAndQ.interpretFunction
interpret(valuation, p)

Substitute each atom in p with values given by the valuation.

The valuation can be a Function that accepts an atom and returns a logical value, a Dictionary mapping from atoms to logical values, or an iterable that can construct such a dictionary. No substitution is performed if an atom is not one of the dictionary's keys.

Examples

julia> @atomize interpret(atom -> ⊤, ¬p)
¬⊤

julia> @atomize interpret(p => ⊤, p ∧ q)
⊤ ∧ q
source
PAndQ.interpretationsFunction
interpretations(valuations, p)
interpretations(p)

Return an Array{Bool} given by interpreting p with each of the valuations.

Examples

julia> collect(interpretations(⊤))
0-dimensional Array{Bool, 0}:
1

julia> @atomize collect(interpretations(p))
2-element Vector{Bool}:
 1
 0

julia> @atomize collect(interpretations(p ∧ q))
2×2 Matrix{Bool}:
 1  0
 0  0
source
PAndQ.solutionsFunction
solutions(p)

Return a stateful iterator of valuations such that interpret(valuation, p) == ⊤.

To find every valuation that results in a true interpretation, convert the proposition to conjunctive normal form using normalize. Otherwise, a subset of those valuations will be identified using the tseytin transformation.

See also interpret and tautology.

Examples

julia> map(collect, solutions(⊤))
1-element Vector{Vector{Any}}:
 []

julia> @atomize map(collect, solutions(p))
1-element Vector{Vector{Pair{PAndQ.Variable, Bool}}}:
 [PAndQ.Variable(:p) => 1]

julia> map(collect, solutions(⊥))
Any[]
source

Predicates

PAndQ.is_tautologyFunction
is_tautology(p)

Return a Boolean indicating whether the given proposition is logically equivalent to a tautology.

Examples

julia> is_tautology(⊤)
true

julia> @atomize is_tautology(p)
false

julia> @atomize is_tautology(¬(p ∧ ¬p))
true
source
PAndQ.is_contradictionFunction
is_contradiction(p)

Return a Boolean indicating whether the given proposition is logically equivalent to a contradiction.

Examples

julia> is_contradiction(⊥)
true

julia> @atomize is_contradiction(p)
false

julia> @atomize is_contradiction(p ∧ ¬p)
true
source
PAndQ.is_truthFunction
is_truth(p)

Return a Boolean indicating whether given proposition is logically equivalent to a truth value.

Examples

julia> is_truth(⊤)
true

julia> @atomize is_truth(p ∧ ¬p)
true

julia> @atomize is_truth(p)
false

julia> @atomize is_truth(p ∧ q)
false
source
PAndQ.is_contingencyFunction
is_contingency(p)

Return a Boolean indicating whether p is a contingency (not logically equivalent to a truth value).

Examples

julia> is_contingency(⊤)
false

julia> @atomize is_contingency(p ∧ ¬p)
false

julia> @atomize is_contingency(p)
true

julia> @atomize is_contingency(p ∧ q)
true
source
PAndQ.is_satisfiableFunction
is_satisfiable(p)

Return a Boolean indicating whether p is satisfiable (not logically equivalent to a contradiction).

Examples

julia> is_satisfiable(⊤)
true

julia> @atomize is_satisfiable(p ∧ ¬p)
false

julia> @atomize is_satisfiable(p)
true

julia> @atomize is_satisfiable(p ∧ q)
true
source
PAndQ.is_falsifiableFunction
is_falsifiable(p)

Return a Boolean indicating whether p is falsifiable (not logically equivalent to a tautology).

Examples

julia> is_falsifiable(⊥)
true

julia> @atomize is_falsifiable(p ∨ ¬p)
false

julia> @atomize is_falsifiable(p)
true

julia> @atomize is_falsifiable(p ∧ q)
true
source
PAndQ.is_equisatisfiableFunction
is_equisatisfiable(p, q)

Return a Boolean indicating whether the predicate is_satisfiable is congruent for both propositions.

Examples

julia> is_equisatisfiable(⊤, ⊥)
false

julia> @atomize is_equisatisfiable(p, q)
true
source

Ordering

Propositions and their truth values have a strict partial order. The truth values tautology and contradiction are the top and bottom of this order, respectively. A proposition that satisfies the predicate is_tautology or is_contradiction is also at the top or bottom of the order, respectively. Propositions that satisfy the predicate is_contingency occupy the middle of this order. In other words, ⊥ < ⊤, ⊥ <= p, and p <= ⊤ for some proposition p. The ordering is partial because the predicates == and is_truth may both be false for two given propositions.

Note

The implementations for == and < also define the semantics of isequal, >, <=, and >=. This does not define the semantics of isless, which is used for total orders.

Warning

The assumption that isequal(p, q) implies hash(p) == hash(q) is currently being violated. A future version will implement the Quine–McCluskey algorithm to minimize propositions, which will enable hash to be defined too.

Base.:==Function
==(p, q)
p == q

Return a Boolean indicating whether p and q are logically equivalent.

Constants are equivalent only if their values are equivalent.

Info

The symbol is sometimes used to represent logical equivalence. However, Julia uses as an alias for the builtin function === which cannot have methods added to it.

Examples

julia> @atomize ⊥ == p ∧ ¬p
true

julia> @atomize (p ↔ q) == ¬(p ↮ q)
true

julia> @atomize $1 == $1
true

julia> @atomize p == ¬p
false
source
Base.:<Function
<(p, q)
p < q

Return a Boolean indicating whether the arguments are ordered such that r < s < t, where r, s, and t satisfy is_contradiction, is_contingency, and is_tautology, respectively.

Examples

julia> @atomize ⊥ < p < ⊤
true

julia> @atomize p ∧ ¬p < p < p ∨ ¬p
true

julia> @atomize p < p
false

julia> ⊤ < ⊥
false
source

Utilities

Core.BoolMethod
Bool(truth_value)

Return a Boolean corresponding to the given truth value.

Examples

julia> Bool(⊤)
true

julia> Bool(⊥)
false
source